

Regulation Driven ES – Business cases

Lessons learned from implementing battery storage at TSO level

Anna Carolina Tortora

Terna S.p.a.

Content

About Terna

The Italian Context

Terna's Projects

The Applications and Their Benefits

Integration of Applications

Lessons learned

- ...the largest independent transmission system operator (TSO) in Europe and the sixth in the world
- ...the **owner** of the Italian High Voltage National Transmission Grid
- ...responsible for the transmission and dispatching of electricity throughout the Country
- ...in charge of the development and maintenance of the Grid, employing a workforce of ~3,500
- ...listed on the Italian Stock Exchange since 2004, with a market cap of about € 6.8 Billion.

Numbers ...

Grid

~ 63,500 Km of three-phase conductors in Italy
22 Interconnections lines with foreign countries
468 Substations

Assets

- 8 Transmission Operating Areas
- **8 Distribution Centers**
- **3 Remote-Control Centers**
- 1 Foreign Subsidiary

Electricity Market (2012)*

325 TWh of energy demand 54,113 MW highest peak of demand

* provisional figures as of April 2013

... and premises

The Italian Context - The Issues

Causes

- Economic crisis and subsequent loss of many big consumers (i.e. national demand decreased 9% from 330 TWh to 300 TWh)
- Aggressive policy of incentives promoting RES + imminence of grid parity
- •Short time to fortify and develop the grid to support new scenarios

Effects

- Fast and massive growth of RES:
 - → Rise in congestion-related curtailments (i.e. 2010 ~500 GWh lost)
 - \rightarrow Rise in demand for non-spinning reserve
- Traditional power plants running at minimum load:
 - → Loss of inertia in smaller insular systems (i.e. Sicily and Sardinia)
- \rightarrow Loss of available frequency reserves

Mitigating actions

- •Optimize integration of RES and increase flexibility of national grid (i.e. smart grid)
- •Reduce congestions and ensuing curtailments occurring along critical backbones
- Provide the necessary reserves to the system and improve safety of grid.

Data analysis

Example: Trend of RES increase in southern and Sicily areas

Example: Percent increase in usage of Tertiary Reserve Up as compared to 2010, with relative probability of purchased hours as caused by the renewable trend

The Italian Context – Solutions Tool Box

Paris | 19th to 21st November 2014

Dav 2 - Market

Narker

Terna's Storage Projects

Power Intensive

- Mission: increase safety of grid
- Total Power: 40 MW
- · Solutions: Li-Ion, Zebra, Flow, Supercaps
- Number of sites: 2
- Investment Size: 93 €mln; 2,3 €mໂn/MW

PHASE I: 16 MW Storage Lab

- Codrongianos
- Total Power: ≈ 8 MW
- Status: in commissioning
- Ciminna
- Total Power: ≈ 8 MW
- Status: in commissioning

PHASE II: 24 MW

Casuzze and Codrongianos: to be initiated

Energy Intensive

- Mission : reduce grid congestions
- Total Power: 35 MW
- Solution: NaS Sodium Sulfur
- Number of sites: 3
- Investment Size: 160 €mln; 4,6 €mln/MW

(*) more like10,8 MW

The Concept Behind Terna's Virtual Storage Plant

DEFINITION AND DEVELOPMENT OF A VIRTUAL STORAGE PLANT

A Platform capable of integrating the characteristics and limitations of each technology while maximizing their performance and reducing additional costs stemming from not-optimal usage

Summary of "stand alone" business cases for EESS

Primary regulation

Primary regulation is compensated in Italy, although reserve capacity is compulsory and not remunerated

Energy Storage Global Conference Explaining I Exchanging I Enabling Paris | 19th to 21st November 2014

Day 2 - Market

Benefit from Primary Regulation

Benefits evaluated based on a model of the Energy Market (MGP 2013)

Benefits from Congestion Relief and T&D Deferral - 1

When assessing profitability for Energy Storage Systems different benefits must be taken into account

Decrease in the cost of energy

It's possible to accumulate energy during network congestions, thus avoiding curtailments, and to then release that same energy during peak hours, thus decreasing the overall system cost of energy

Increase in system safety

The increase in renewable generation has resulted in the following safety issues:

- decrease in primary control reserves;
- decrease in secondary tertiary control reserves;
- decrease in the system's inertia.

Energy storage, together with Power Conversion System (PCS), can contribute to the solution of these problems

Transmission system investment deferral

The ability to supply and absorb electric energy can limit the impact of renewable generation on the grid, thus decreasing the urgency of grid infrastructure development

Energy Storage Global Conference Explaining | Exchanging | Enabling Paris | 19th to 21st November 2014

B

Benefits from Congestion Relief and T&D Deferral - 2

Efficiency

Energy intensive project's efficiency index

Case study – Italian Market

Day 2 – Market

Narker

VBO

Profitability higher than stand-alone cases can be reached with application integration

Battery profitability for different primary/secondary regulation combination weights

Different batteries and applications can be integrated in multiple ways

Application integration	Description	Example of superposition		
Signal super- position	 Battery follows a power signal equal to combination of different applications Power bandwidth is allocated among signals to maximise profitability 	Signal 1	Signal 2	Total signal
Time allocation	 Battery is dedicated preferentially to an application, but its utilization is integrated with a secondary application when the first one is not requested 	Signal 1 (Priority)	Signal 2	Total signal
Technologies integration	 Original signal is separated in two components (one more "energy-intensive" and one more "power intensive"), which are serviced by different technologies (each most suitable for the specific signal) 	Original signal	Signal serviced by technology 1	Signal serviced by technology 2

Product development: significant space to improve the value by improving requirements definition

Paris | 19th to 21st November 2014

Examples of quotes

"We could well design batteries with different c-rates, but we don't know what is most needed by our clients and what would deliver the most value "

"We are not working explicitly on **life cycles** improvements, as no one asked us to improve this aspect"

"If we discuss in detail with the client the local specific regulation and markets for the applications of interest we could design much better tailored products"

Beyond Capex: the other 4 parameters that determine value

Key specific inputs

- Battery profitability depends on both the value of an application and the portion of such value that can be captured with current technologies
- The objective of the analysis is to understand, for each technology and selected applications:
 - What is the maximum potential value at stake
 - What are the key technological drivers that would allow the battery to capture the entire value

Methodology and assumption

- An ideal battery is used to simulate the maximum value extractable from each application
- The ideal battery hypothesized encompasses for all drivers the best performances observed among the different technologies analysed
- The results of this battery and its technical characteristics are compared with those of real batteries to identify the key technological drivers that prevent each real system to capture the entire value available
- Part of the potential value not
 captured depends on synergies¹
 between multiple drivers, and it is not
 directly attributable to a single factor

Energy Storage Global Conference

Day 2 – Market

1 Effects due to gap vs. ideal battery on more than a single technological driver that, when combined, reduce the value by more than the sum of the stand alone effect (e.g., while a higher life cycle and a higher C-rate can capture more value, the two together can usually generate even higher revenues than the sum of two effects) November 2014

Thank you for your attention

Day 2 – Market