Implementing Li-ion Energy Storage on Island Grids

Michael Lippert

Energy Storage Global Conference Paris, 20 November 2014

Purpose and Benefits of Battery Storage on Island Grids

Overcome technical limits in integrating intermittent renewables:

- Smoothing of highly variable generation, control of ramp rates
- Stick to the forecast:

PV & wind power become firm and predictable components of energy mix

Provide ancillary services

- Cheaper than fossil based generation
- Avoid loss of revenue due to curtailment
- Avoid investments in balancing reserves

Major Functions of Storage

Wind & Solar generation

Ramp control Limit up & down ramp rates

Smoothing

Keep production in forecast window

Shaping

3

Stable power output Controlled ramp up/down

Grid

Frequency Regulation

Injection/Absorption of active power

Peak Shaving

- of consumption peaks
- of generation peaks

La Réunion – CRE Tender

- 9 MW PV PV plant
 - First project out of 16 contracts CRE (50MWp)
- 9 MWh Li-ion Energy Storage System
 - Consortium Saft, Ingeteam, Corex
 - 9 containers Intensium Max 20+F
 - 5,6 MVA converters in 4 containers

EDF SEI specification

- Constant power injection @ 40% Pmax
- Primary reserve : 10% Pmax / 15 minutes
- Voltage support by PCS reactive power

Battery Optimization

	Lifetime	Average DOD	Losses	Energy capacity
	>12 years	69.8%	11.3%	9 MWh
Installation	>17 years	56.3%	3.5%	14 MWh
Octobre 2	>20 years	44.9%	0.7%	21 MWh

Property of Saft

bre 2014

Salinas 10MWp PV Power plant (Puerto Rico)

PREPA Minimum Requirements

PV ramp rate control: 10% per minute

Frequency response

- With 5% droop
- Up to 9 minutes in case of large under-frequency
- Required compliance > 98,5% in a week period

Ramp Rate Control + Frequency response

Salinas 10MWp PV Power plant (Puerto Rico)

Optimal sizing

- Compromise between ESS peak power and compliance of MTR
- PREPA requires 98.5% compliance of MTR during a week period.

The chosen solution

PV Farm Building blocks

10MW 3x (IM20P+PCS)

1,3 MWh 5 MW

Takeaways

- One single device to provide multiple functions and to address multiple value streams
- Each system is unique: optimium Power & Energy versus requirements and cost
- Integration is key Battery – Conversion – Controls

Energy Storage installations 2012/14

Thank You

michael.lippert@saftbatteries.com

